A SMIDGIN OF SOAR

'SOAR (Smallitalk On A RISC) was a research effort begun in 1982 as a follow on to the the
RISC Il work at Berkeley. SOAR was an attempt to extend RISC concepts into an area that was
thought to be unsuitable for RISC, that of object oriented programming environments.

SOAR was like a RISC in that;

1) It was truly a reduced instruction set machine with only 22 instructions

2) It was a word oriented machine that did not support arbitrary shifts (although
byte-oriented operations were possible using byte insert and extract instructions)

3) It had a simple Load/Store memory access architecture.

4) It had a simple 3 stage pipeline.

5) It was a Multiple Register Set (MRS) architecture utilizing overlapped register
windows as in RISC | and RISC II. (It is debateable if this is a true RISC ftrait)

SOAR had some non-RISC traits also;

1) SOAR was a tagged architecture. The upper 4 bits of object pointers were tag bits.
Operand tags were examined in real time as operands flowed through the
pipeline. If the type of either operand were other than small integer, the machine
would take a "tag trap". These traps were invisible to the programmer.

2) All the major machine state was shadowed in order to support the traps.

3) The instruction set include a load and store multiple to facilitate fast context
switching and to reduce the cost of overflows. These were the only multicycle
instructions beside Load and Store, and in retrospect were a mistake.

AR re:

Direct Compilation:

Unlike most Smalltalk machines prior to SOAR that were bytecode interpreters, SOAR
relied on a compiler that directly compiled Smalltalk into SOAR object code. | don't remember
for sure what the code expansion factor over bytecodes was, but a figure of 3.3:1 comes to mind.

Using direct compilation rather than bytecode interpretation made supporting the
debugging environment difficult.

OT less:

In the Smalltalk-80 virtual machine, all references to an object go through a level of
indirection implemented as the Object Table. However SOAR is an OT less system where Object
Pointers contain the direct address of the referenced object. One of the problems with this
implementation is that the primitive become becomes an expensive operation (become swaps
all the instance pointers of its receiver and its argument) as in principle one now has to look
through the entire system for pointers to the two objects. All five grow methods use become.

A solution proposed by David Wallace was to move all of the variable fields out of growable
objects into arrays (this eliminates 95%) and to implement a technique called "Lazy Become".
Lazy Become is a good example of the interdisciplinary nature of the SOAR system design. Lazy
Become leveraged the virtual memory system. Only objects resident in pages currently in core
are fixed up. When a new page is read in, it would be scanned for all references to objects that
had been the subjecs of a become, and such references fixed up. Then overnight, the system
would scan through all currently invalid memory pages looking for objects to fix up. Of course
Lazy Become would have to continue to operate in the debugging environment.




Method Cache:

In order to boost performance, SOAR supported self modifying code in the form of an
"in-line method cache". What that basically amounted to was that the pointer to the object that
actually executed the message the last time the message was sent was stored in the sending code.
This helped to minimize class traversal that might occur each time a message looked for an
implementer. It is very similar to a MMU TLB where instead of minimizing page table traversal
class hierarchy traversal is minimized, and instead of being physically located in the TLB, the
pointers are distributed in memory with the sending code. Simulations indicated that method
caching had a 95% "hit" rate. (The idea was originally suggested by Peter Deutsch)

The Method cache plus overlapping register windows significantly reduced the call/return
overhead in Smalltalk (which consumed nearly 50% of the Dorado, and 40% of Apple Smalltalk)

I don't recall ever having any serious discussions as to how method caching might complicate
cache memory design of future versions of the machine. Especially on board cache memory.

Generation Scavenging

SOAR was the first Smalltalk implementation to support generation scavenging for
automatic storage reclamation. Up until SOAR, reference counting was the standard technique
for managing memory but it used a significant amount of the CPU (11% of the Dorado | think).
On average, 12 words of data are freed and must be reclaimed per 100 Smalitalk-80 virtual
machine bytecodes executed.

Generation Scavenging is based on the observation that objects either die young or live
forever. Objects are "placed" into four different generations based on age and only new objects
are reclaimed. If a pointer to a new object is stored into a memory location within an old object,
the SOAR hardware would, by examining the generation tags of the object pointers, take a trap.

Virtual Memory

SOAR supported existing virtual memory hardware through the technique of "offline
reorganization". Since pages dwarf objects, offline (overnight) utility programs would be used
to group objects frequently used together into pages.

Traditional Languages
Unlike bytecode interpretive hardware, SOAR could execute compiled C or PASCAL code
simply by setting a bit in the instruction opcode field which disabled tag checking.

REGISTER WINDOWS

The window size was less than in the RISC machines although there were more of them.
This was due to the following ovservations:

a) Method sends tend to be more deeply nested, resulting in many "procedure calls"

b) Because operations in Smalltalk are performed by sends, any data manipulation can
be turned into a procedure call. Hence no local registers are included in SOAR
register windows.

¢) Smalltalk methods use few temporary variables

A window size of 8 registers was found to hold all the arguments, temporaries, and fixed
size elements needed by 93.4% of method contexts (activation records).
A register file containing 8 windows was found to be adequate.




THE COMPILER

The compiler was a 3 pass affair. Pass 1 generated 3 address intermediate code, Pass 2
did some simple peephole optimization, and Pass 3 was a register allocation pass.

An interesting aspect of the compiler was that the symbol table functioned as both a
compile-time and run-time data structure. As a compile-time structure, if kept track of
method temporaries and parameters, block parameters, class instance specifications, and the
class hierarchy with asociated methods and metaclasses. As a run-time structure, it was used
by the method lookup routines in order to find the proper method to which a message should be
sent.

An interesting idea for an efficient Smalltalk compiler that was intended to augment the
standard compiler was called Classy by its originators, Jim Larus and Will Bush. The idea was
to take as input Smalltalk methods where the classes of the method's variables and arguments are
all declared. These methods are then transformed, with the assistance of a library of
transformations, called Rewrites, into conventional Smalltalk that has sends eliminated and
class-specific operations put in place of more general ones.

Classy seems like a good way of improving kernel performance as long as the transformed
methods can be considered correct and atomic (debugging them would pose some problems).

THE DEBUGGER

The debugger for SOAR proved to be a challenge for a number of reasons.

In Smalltalk-80 the virtual machine hides the underlying machine from the system,
hence interrupts can be handled by having the interpreter poll at every bytecode (which is what
Smalltalk-80 does). For SOAR however, before invoking the debugger it is necessary to
recognize whether the CPU is busy executing primitives, runtime support, or actual Smalltalk
code. One idea is to have a companion processor handle user interrupts and let the SOAR CPU
simply poll a flag via a transparent trap at backward branches.

Another more serious difficulty is maintaining the context chain. In Smalltalk-80, block
contexts are all objects that are linked in a oneway list by sender pointers. In SOAR, most
contexts are not treated as objects. This would be ok if contexts always exhibited LIFO behavior
as they could simply be placed on a stack. But Smalltalk contexts do not always exhibit LIFO
behavior.

Access to a context's local variables also has to be treated differently. In Smalltalk-80,
local variables are full fledged objects so that inspectors can be created for them. In SOAR
however, local variables may be used only as temporaries within the method and, therefore, may
show up only in a register within the context window frame.

Functions such as informing the user which routine is running, and single stepping also
have to be specially handled in SOAR.

SOAR PERFORMANCE

With a cycle time of 550ns (8 times slower than the Dorado) some very questionable
"micro benchmarks" showed performance of from .5 Dorado to over 5x a Dorado.




SOAR CPU DESIGN

While SOAR may have a minimal number of instructions, the tag checking, register
shadowing, and trapping hardware proved to be nontrivial. All of the possible system exceptions
and traps had to be prioritized which added to the fairly sizeable control PLA's. Control signals
necessary for trap determination also led to some critical path problems.

Load and Store multiple proved to be a mistake in that their complexity and unusual nature
did not warrant the design complexity increase (although the silicon area increase was actually
quite small). In my first pass of the SOAR microarchitecture | froze the pipeline while the load
or store multiple occurred, Joan Pendleton subsequently changed this to have special NOP
instructons flow through the pipe, which is more natural. Load and Store multiplies had to be
reexecuted if a system exception (such as a page fault) occured during their execution.

SOAR HARDWARE STATUS

A 35,000 transistor 3 micron NMOS implementation of SOAR was fabricated. The chip
ran some diagnostics but that was about as far as it was taken. A board was designed to surround
the SOAR chip and sit in a SUN on the multibus. The board was fabricated, but | do not know if it
was ever fully debugged.

IN RETROSPECT

I believe that the SOAR approach to Smalltalk is still a viable one and could achieve
significantly better performance than any implementation existing today. SOAR was never fully
demonstrated in a decent technology (say 1.5 micron CMOS @ 15 MHZ). The problem with
SOARSs lack of "success" had a number of causes:

a) Many of the people working on the project had no deep understanding of what
Smalltalk was or how it worked. There was no interactively useable Smalltalk engine
at Berkeley during the entire SOAR project.

b) Doing a direct compiled RISC based implementation of Smalltalk is hard (see below).

¢) Smalitalk never has caught outside of academia on so there was little technology
transfer or enthusiasm from industry. This in turn negatively effected the level of
continuing work at Berkeley.

By hard, | mean SOAR was a very large long term progect to be undertaken by the Berkeley CS
and EE departments. The design of SOAR ,as compared to a RISC | or RISC II, meant the design of a
system , a complete programming environment. In SOAR the distincion between hardware and
software became even more fuzzy, and thus the design effort became very multidisciplinary

involving a large number of faculty and graduate students over a long period of time. Much

learning was done on how to manage a large program that significantly exceeded the lifetime of

the average Masters student. Maintaining continuity and reasonably scheduling tasks became
significant challenges. The following disciplines were involved, and input from all of them could

affect design in any other area:

1) silcon design 5) compiler design

2) debugger design 6) board level design

3) virtual memory design 7) instruction set design

4) performance analysis 8) silicon and system simulation

Implementers of Smalltalk continue to figure out clever tricks for implementing
Smalltalk on standard architectures. One can argue that clever tricks coupled with generally
increasing horsepower obviates the need for an architecture like SOAR. But it does seem that
much effort is focused on how to get Smalltalk to execute efficiently on existing hardware
platforms rather than on improving the language itself.




SOURCES:

1) Proceedings of CS292R, "SMALLTALK ON A RISC", Architectural Investigatons
April, 1983. (Approximately 18 authors)

2) The Architecture of SOAR: Smalltalk on a RISC

David Ungar, Ricki Blau, Peter Foley, Dain Samples, and David Patterson
3) Preliminary SOAR Architecture Results of CS292R, Winter 1983

Mike Klein, Pete Foley, and Dain Samples

Pete Foley
6/10/88




